?
第一步、收集数据
这个过程要先问自己要收集哪些数据,大数据分析并不是对企业所有的数据都进行收集,而是相关的,有直接或者间接联系的数据,企业要知道哪些数据是对于战略性的决策或者一些细节决策有帮助的,分析出来的数据结果是有价值的,这也是考验一个数据分析员的时刻。例如哪些数据可以得出信息对于一个项目的业务有帮助,或者是更好的实现业务目标。在进行大数据分析规划的时候,一般是针对一个项目的目标进行精确的分析,比较容易满足业务的目标。
第二步、应对复杂性
为了得到更加精确的结果,在大数据分析的过程当中,应对复杂性是关键的环节,这就要求企业相关的业务规则都是已经确定好的,这些业务规则可以帮助数据分析员评估他们的工作复杂性,对了应对这些数据的复杂性,将数据进行分析得出有价值的结果,才能更好的实施。
第三、不断重复的相关分析
制定好了相关的业务规则之后,数据分析员需要对这些数据进行分析输出,因为很多时候,这些数据结果都是为了更好的进行查询以及用在下一步的决策当中使用,如果项目管理团队的人员和数据分析员以及相关的业务部门没有进行很好的沟通,就会导致许多项目需要不断地重复和重建。
第四、维护和更新
一个有效的大数据分析是需要持续的维护的,因为分析结果的使用是长期的,决策层的需求是变化的,随着企业的发展,会有很多的新的问题出现,数据分析员的数据分析也要及时的进行更新,现在的很多数据分析软件创新的主要方面也是关于对数据的需求变化部分,可以保持数据分析结果的持续价值。
第五、注重用户需求的重要性
大数据分析的过程和结果都要依托于一个强大的计算机基础架构,这对于处理大数据信息也是至关重要的,如果要开发一些交互的系统,那么对于满足不同的用户需求是很重要的,不仅仅是数据分析员、企业的管理人员都要注重用户需求的重要性。
报告撰写是整个数据分析的最后一步,是对整个数据分析过程的总结。一份优秀的报告需要一个名确的主题、清晰的目录、图文并茂描述数据、结论与建议。
数据分析的基本步骤为:
1、明确分析目的
明确数据分析的目的,才能确保数据分析有效进行,为数据的采集、处理、分析提供清晰的指引方向。
2、数据收集
数据收集按照确定的数据分析的目的来收集相关数据的过程,为数据分析提供依据。一般数据来源于数据库、互联网、市场调查、公开出版物。
3、数据处理
数据处理包括:数据采集、数据分组、数据组织、数据计算、数据存储、数据检索、数据排序。
4、数据分析
数据分析分为:定性数据分析是指对词语、照片、观察结果之类的非数值型数据进行的分析。验证性数据分析是侧重于已有假设的证实或证伪。探索性数据分析是对数据进行分析从而检验假设值的形成方式,侧重于数据之中发现新的特征。
5、数据展示
常用柱形图、饼图、折线图等图标展示有用的信息,一目了然的发现数据的本质与作用。
6、报告撰写
报告撰写是整个数据分析的最后一步,是对整个数据分析过程的总结。一份优秀的报告需要一个名确的主题、清晰的目录、图文并茂描述数据、结论与建议。
一、数据收集
数据收集是数据分析的起点。电商企业可以通过各种渠道收集数据,如网站、APP、社交媒体、电子邮件、客服等。这些数据包括用户信息、购买行为、网站流量、社交媒体互动、客服对话等。数据的收集需要严格遵守法律法规和用户隐私政策,确保数据的合法性和安全性。
二、数据清洗和整合
数据收集后,需要对数据进行清洗和整合。数据清洗是指将无用或错误的数据删除或修正,以避免对数据分析的干扰。数据整合是指将来自不同渠道的数据合并成一张表格或数据库,以便后续的分析。
三、数据分析
数据分析是电商数据分析的核心。数据分析可以分为描述性分析、预测性分析和决策性分析三个层次。描述性分析是对数据进行简单的统计分析,如平均值、中位数、众数、标准差等,以了解数据的基本特征。预测性分析是对未来进行预测,如趋势分析、回归分析、时间序列分析等,以帮助企业制定长期战略。决策性分析是对具体问题进行分析,如产品定价、促销策略、用户行为分析等,以帮助企业做出决策。
四、数据可视化
数据可视化是将分析结果以图表、图形等形式呈现出来,以便更好地理解数据。数据可视化可以使数据更加直观、易于理解,同时可以帮助企业更好地与内部员工和外部合作伙伴分享数据分析结果。
五、数据应用
数据应用是将数据分析结果应用到实际业务中,以提升企业绩效。数据应用可以包括产品改进、营销优化、用户服务改进等方面。数据应用需要与业务部门密切合作,确保数据分析结果能够真正地为业务带来价值。
以下是一个简单的Excel数据分析教程,包括数据筛选、排序、分类汇总、图表制作和可视化等基本功能:
1、数据筛选:可以通过Excel中的“自动筛选”和“高级筛选”功能来进行数据筛选。例如,可以使用“自动筛选”来选择特定的列或区域,然后使用“高级筛选”来选择不同的条件,如颜色、值、百分比等。
2、排序:Excel具有多种排序功能,如升序、降序、自定义排序等。可以使用这些功能来对数据进行排序。例如,可以使用“升序”来按升序排列数据,使用“降序”来按降序排列数据,使用“自定义排序”来按照用户指定的规则进行排序。
3、分类汇总:可以使用Excel中的“分类汇总”功能来对数据进行分类汇总。分类汇总可以将数据分成不同的组,然后计算每个组的平均值、标准差、最大值和最小值等。可以使用“求和”、“计数”等函数来对不同的组进行计算。
4、图表制作:Excel具有多种图表类型,如柱形图、折线图、饼图等。可以使用这些类型来创建数据可视化。例如,可以使用“柱形图”来创建数据的趋势图,使用“折线图”来创建数据的趋势图,使用“饼图”来创建数据的分布图。
5、可视化:Excel具有多种可视化功能,如条形图、饼图、散点图、直方图等。可以使用这些功能来对数据进行可视化。例如,可以使用“条形图”来创建数据的对比图,使用“饼图”来创建数据的饼状图,使用“散点图”来创建数据的散点图,使用“直方图”来创建数据的直方图。
CRISP-DM模型的基本流程包括:
商业理解:
这一步骤旨在从商业角度理解项目的目标和需求,把理解转化为数据挖掘问题的定义和制定以实现目标为目的的初步计划。具体步骤包括:
1、确定业务目标:
分析项目背景,以业务视角分析项目的目标和需求,确定业务角度的成功标准;
2、项目可行性分析:
分析拥有的资源、条件和限制,进行风险、成本和效益的评估;
3、确定数据挖掘目标:
明确数据挖掘的目标和成功标准,数据挖掘目标和业务目标是不一样的,前者指的是在技术上,例如生成一颗决策树。
4、提出项目计划:
对整个项目做一个计划,初步确认用到的技术和工具。
数据理解
数据理解阶段开始于原始数据收集,然后是熟悉数据,表明数据质量问题,探索并初步理解数据,发觉有趣的子集以形成对隐藏信息的假设。具体步骤包括:
1、收集原始数据:
收集项目涉及的数据,如有必要,将数据导入数据处理工具中并做一些初步的数据集成工作,生成相应的报告;
2、数据描述:
对数据进行一些大致描述,例如记录数、属性数等并给出相应的报告;
3、探索数据:
对数据做一些建单的数据统计分析,例如关键属性的分布等;
4、检查数据质量:
包括数据是否完整,是否有错,受有缺失值等。
数据准备
建立模型
模型评估
模型实施
正加财富网内容推荐 | ||
OK交易所下载 | USDT钱包下载 | 比特币平台下载 |
新手交易教程 | 平台提币指南 | 挖矿方法讲解 |